Received 27 September 2005 Accepted 28 September 2005

Online 5 October 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.034 wR factor = 0.078 Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[2-aminopyridinium [aquacuprate(II)μ₄-5-sulfonatosalicylato]]

The title complex, {[Cu(C₇H₃O₆S)(H₂O)](C₅H₇N₂)]_n, consists of a polymeric anionic chain and protonated 2-aminopyridine. In the chain, each Cu^{II} atom has a distorted octahedral environment. The fully deprotonated 5-sulfonatosalicylate ligand acts as a μ_4 -bridging link, resulting in a dinuclear Cu₂O₆ motif. N-H···O hydrogen bonds between cations and anions lead to a two-dimensional architecture.

Comment

5-Sulfosalicylic acid possesses three functional groups which can be partly or fully deprotonated to give rise to interesting topologies (Ma *et al.*, 2003). A search of the Cambridge Structural Database (Version 5.26 of November 2004 Allen, 2002) and recent references revealed that about 40 crystal structures of 5-sulfosalicylate–metal complexes have been reported, among which are seven metal complexes containing fully deprotonated 5-sulfosalicylate (ssal^{3–}) (Fan & Zhu, 2005*a,b*; Fan *et al.*, 2005; Marzotto *et al.*, 2001; Sun *et al.*, 1995; Wang, Zhang, Li *et al.*, 2004; Wang, Zhang, Song & Ju, 2004). We present here another metal complex with ssal^{3–} in a new coordination mode, (I).

The complex consists of a polymeric anion and protonated 2-aminopyridine cations. In the polyanion, the Cu atom adopts a distorted octahedral geometry defined by five O atoms from two carboxylate, one phenolate and two sulfonate groups of four different ssal³⁻ ligands and one O atom from one water molecule (Fig. 1 and Table 1). The ssal^{3–} ligand serves as a μ_4 bridging link through carboxylate, phenolate and sulfonate groups. Both the sulfonate and the mono-oxygen of the carboxylate act in a bridging mode to form a Cu₂O₆ dimeric unit that is different from the Cu₂O₈ unit in [Cu₂(CH₃COO)₄- $(H_2O)_2$] (Brown & Chidambaram, 1973). Such a dimeric motif is the first example in 5-sulfosalicylate metal complexes. The $Cu \cdot \cdot \cdot Cu$ separation in this unit is 2.9961 (7) Å, significantly longer than that in $[Cu_2(CH_3COO)_4(H_2O)_2]$. As expected, the structure is extended into a chain by the bridging ssal³⁻ ligands (Fig. 2). The cations, viz. protonated 2-aminopyridine, interact with the anionic polymeric chains through N-H···O hydrogen bonds (Table 2) and the extended hydrogenbonding network adopts a layer structure.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of a segment of (I). Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes (i): 1 - x, -y, 1 - z; (ii): x, -1 + y, z; (iii) 1 - x, 1 - y, 1 - z.]

A view of the anionic one-dimensional chain in (I). H atoms have been omitted for clarity.

Experimental

Cu(CH₃COO)₂·H₂O (0.100 g, 0.50 mmol), 5-sulfosalicylic acid dihydrate (0.126 g, 0.50 mmol) and 2-aminopyridine (0.095 g, 1.0 mmol) were mixed in water (20 ml). The solution was set aside for the solvent to evaporate. After two weeks, green block-shaped crystals of (I) were obtained.

Crystal data

refinement

$\begin{bmatrix} Cu(C_7H_3O_6S)(H_2O) \end{bmatrix} (C_5H_7N_2) \\ M_r = 391.84 \\ \text{Triclinic, } P\overline{1} \\ a = 7.7274 (9) \text{ Å} \\ b = 8.0856 (10) \text{ Å} \\ c = 12.1577 (15) \text{ Å} \\ \alpha = 84.323 (2)^{\circ} \\ \beta = 77.986 (2)^{\circ} \\ \gamma = 69.051 (1)^{\circ} \\ V = 693.62 (15) \text{ Å}^{3} \end{bmatrix}$	Z = 2 $D_x = 1.876 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 2538 reflections $\theta = 2.7-28.2^{\circ}$ $\mu = 1.77 \text{ mm}^{-1}$ T = 295 (2) K Block, green $0.15 \times 0.12 \times 0.04 \text{ mm}$
Data collection	
Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2002) $T_{\min} = 0.778, T_{\max} = 0.933$ 5241 measured reflections	2554 independent reflections 2360 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 25.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.078$ S = 1.06 2554 reflections 223 parameters H atoms treated by a mixture of independent and constrained	$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0281P)^2 \\ &+ 0.7674P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.38 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.35 \text{ e } \text{\AA}^{-3} \end{split}$

Table 1		
Selected geometric parameters	(Å,	°),

-			
Cu1-O1	1.9392 (18)	Cu1-O7	1.937 (2)
Cu1-O1 ⁱ	1.9797 (18)	S1-O5	1.452 (2)
Cu1-O3	1.8771 (19)	S1-O4	1.455 (2)
Cu1-O4 ⁱⁱ	2.464 (2)	S1-O6	1.463 (2)
Cu1-O5 ⁱⁱⁱ	2.779 (2)		
$O1-Cu1-O1^i$	80.27 (8)	O3-Cu1-O7	89.45 (9)
$O1-Cu1-O4^{ii}$	82.51 (7)	O4 ⁱⁱ -Cu1-O5 ⁱⁱⁱ	167.09 (6)
$O1^i - Cu1 - O4^{ii}$	88.64 (7)	O7-Cu1-O1	176.63 (8)
$O1-Cu1-O5^{iii}$	86.16 (7)	O7-Cu1-O1 ⁱ	96.36 (8)
O1 ⁱ -Cu1-O5 ⁱⁱⁱ	83.35 (7)	O7-Cu1-O4 ⁱⁱ	97.25 (8)
O3-Cu1-O1	93.92 (8)	O7-Cu1-O5 ⁱⁱⁱ	93.70 (8)
$O3-Cu1-O1^i$	174.14 (8)	O5-S1-O4	114.05 (13)
$O3-Cu1-O4^{ii}$	91.43 (8)	O5-S1-O6	112.24 (13)
O3-Cu1-O5 ⁱⁱⁱ	95.51 (8)	O4-S1-O6	110.66 (12)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, y - 1, z; (iii) -x + 1, -y + 1, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{\text{O7}-\text{H7}B\cdots\text{O3}^{\text{iv}}}$	0.85 (3)	1.89 (3)	2.728 (3)	173 (3)
$O7-H7A\cdots O2^{i}$	0.84(3)	1.88 (4)	2.667 (3)	155 (4)
$N2-H3N\cdots O6^{v}$	0.82(4)	1.85 (4)	2.669 (3)	173 (4)
$N1 - H2N \cdot \cdot \cdot O5^{v}$	0.82(4)	2.27 (4)	3.076 (4)	168 (4)
$N1 - H1N \cdots O4$	0.82 (4)	2.12 (4)	2.925 (4)	174 (4)

Symmetry codes: (i) -x + 1, -y, -z + 1; (iv) -x + 2, -y, -z + 1; (v) x + 1, y, z.

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms on O and N atoms were located in difference Fourier maps and were refined with distance restraints of O-H = 0.85 (1) Å and N-H =0.82 (1) Å and fixed isotropic displacement parameters of $U_{iso}(H) =$ 0.05 Å^2 .

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the National Natural Science Foundation of China (No. 50073019).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Brown, G. M. & Chidambaram, R. (1973). Acta Cryst. B29, 2393-2403.
- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, S.-R., Cai, G.-Q., Zhu, L.-G. & Xiao, H.-P. (2005). Acta Cryst. C61, m177m178
- Fan, S.-R. & Zhu, L.-G. (2005a). Acta Cryst. E61, m174-m176.
- Fan, S.-R. & Zhu, L.-G. (2005b). Acta Cryst. E61, m2080-m2082.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ma, J. -F., Yang, J., Li, L., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. Commun. 6, 581-583.
- Marzotto, A., Clemente, D. A., Gerola, T. & Valle, G. (2001). Polyhedron, 20, 1079-1087.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
- Sun, H.-Y., Huang, C.-H., Jin, X.-L. & Xu, G.-X. (1995). Polyhedron, 14, 1201-1206.

Wang, W.-G., Zhang, J., Song, L.-J. & Ju, Z.-F. (2004). *Inorg. Chem. Commun.* 7, 858–860.

Wang, X.-Q., Zhang, J., Li, Z.-J., Wen, Y.-H., Cheng, J.-K. & Yao, Y.-G. (2004). *Acta Cryst.* C60, m657–m658.