Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.034$
$w R$ factor $=0.078$
Data-to-parameter ratio $=11.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[2-aminopyridinium [aquacuprate(II)-μ_{4}-5-sulfonatosalicylato]]

The title complex, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)\right\}_{n}$, consists of a polymeric anionic chain and protonated 2-aminopyridine. In the chain, each $\mathrm{Cu}^{\text {II }}$ atom has a distorted octahedral environment. The fully deprotonated 5 -sulfonatosalicylate ligand acts as a μ_{4}-bridging link, resulting in a dinuclear $\mathrm{Cu}_{2} \mathrm{O}_{6}$ motif. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between cations and anions lead to a two-dimensional architecture.

Comment

5-Sulfosalicylic acid possesses three functional groups which can be partly or fully deprotonated to give rise to interesting topologies (Ma et al., 2003). A search of the Cambridge Structural Database (Version 5.26 of November 2004 Allen, 2002) and recent references revealed that about 40 crystal structures of 5-sulfosalicylate-metal complexes have been reported, among which are seven metal complexes containing fully deprotonated 5 -sulfosalicylate (ssal^{3-}) (Fan \& Zhu, 2005a,b; Fan et al., 2005; Marzotto et al., 2001; Sun et al., 1995; Wang, Zhang, Li et al., 2004; Wang, Zhang, Song \& Ju, 2004). We present here another metal complex with ssal ${ }^{3-}$ in a new coordination mode, (I).

(I)

The complex consists of a polymeric anion and protonated 2 -aminopyridine cations. In the polyanion, the Cu atom adopts a distorted octahedral geometry defined by five O atoms from two carboxylate, one phenolate and two sulfonate groups of four different ssal ${ }^{3-}$ ligands and one O atom from one water molecule (Fig. 1 and Table 1). The ssal ${ }^{3-}$ ligand serves as a $\mu_{4^{-}}$ bridging link through carboxylate, phenolate and sulfonate groups. Both the sulfonate and the mono-oxygen of the carboxylate act in a bridging mode to form a $\mathrm{Cu}_{2} \mathrm{O}_{6}$ dimeric unit that is different from the $\mathrm{Cu}_{2} \mathrm{O}_{8}$ unit in $\left[\mathrm{Cu}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Brown \& Chidambaram, 1973). Such a dimeric motif is the first example in 5 -sulfosalicylate metal complexes. The $\mathrm{Cu} \cdots \mathrm{Cu}$ separation in this unit is 2.9961 (7) \AA, significantly longer than that in $\left[\mathrm{Cu}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$. As expected, the structure is extended into a chain by the bridging ssal ${ }^{3-}$ ligands (Fig. 2). The cations, viz. protonated 2-aminopyridine, interact with the anionic polymeric chains through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) and the extended hydrogenbonding network adopts a layer structure.

Received 27 September 2005 Accepted 28 September 2005 Online 5 October 2005

A view of a segment of (I). Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes (i): $1-x,-y, 1-z$; (ii): $x,-1+y, z$; (iii) $1-x, 1-y, 1-z$.]

Figure 2
A view of the anionic one-dimensional chain in (I). H atoms have been omitted for clarity.

Experimental

$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.100 \mathrm{~g}, 0.50 \mathrm{mmol})$, 5 -sulfosalicylic acid dihydrate $(0.126 \mathrm{~g}, 0.50 \mathrm{mmol})$ and 2 -aminopyridine $(0.095 \mathrm{~g}, 1.0 \mathrm{mmol})$ were mixed in water (20 ml). The solution was set aside for the solvent to evaporate. After two weeks, green block-shaped crystals of (I) were obtained.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)$

$$
Z=2
$$

$M_{r}=391.84$
Triclinic, $P \overline{1}$
$a=7.7274$ (9) \AA
$b=8.0856$ (10) \AA
$c=12.1577$ (15) \AA
$\alpha=84.323$ (2) ${ }^{\circ}$
$\beta=77.986(2)^{\circ}$
$\gamma=69.051(1)^{\circ}$
$V=693.62(15) \AA^{3}$
Data collection
Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.778, T_{\text {max }}=0.933$
5241 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.078$
$S=1.06$
2554 reflections
223 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Cu1-O1	1.9392 (18)	Cu1-O7	1.937 (2)
$\mathrm{Cu} 1-\mathrm{O} 1^{\text {i }}$	1.9797 (18)	S1-O5	1.452 (2)
$\mathrm{Cu} 1-\mathrm{O} 3$	1.8771 (19)	S1-O4	1.455 (2)
$\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {ii }}$	2.464 (2)	S1-O6	1.463 (2)
$\mathrm{Cu} 1-\mathrm{O} 5^{\text {iii }}$	2.779 (2)		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\text {i }}$	80.27 (8)	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 7$	89.45 (9)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4^{\text {ii }}$	82.51 (7)	$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{iii}}$	167.09 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{ii}}$	88.64 (7)	$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 1$	176.63 (8)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5^{\text {iii }}$	86.16 (7)	$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 1^{\text {i }}$	96.36 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 5^{\text {iii }}$	83.35 (7)	$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O} 4^{\text {ii }}$	97.25 (8)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 1$	93.92 (8)	$\mathrm{O} 7-\mathrm{Cu} 1-\mathrm{O}{ }^{\text {iii }}$	93.70 (8)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 1^{\text {i }}$	174.14 (8)	O5-S1-O4	114.05 (13)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O}^{\text {ii }}$	91.43 (8)	O5-S1-O6	112.24 (13)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 5^{\text {iii }}$	95.51 (8)	O4-S1-O6	110.66 (12)

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O}^{\text {iv }}$	0.85 (3)	1.89 (3)	2.728 (3)	173 (3)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O}{ }^{\text {i }}$	0.84 (3)	1.88 (4)	2.667 (3)	155 (4)
$\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{O}^{\text {v }}$	0.82 (4)	1.85 (4)	2.669 (3)	173 (4)
$\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O}^{\text {v }}$	0.82 (4)	2.27 (4)	3.076 (4)	168 (4)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 4$	0.82 (4)	2.12 (4)	2.925 (4)	174 (4)

Symmetry codes: (i) $-x+1,-y,-z+1$; (iv) $-x+2,-y,-z+1$; (v) $x+1, y, z$.
H atoms on C atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms on O and N atoms were located in difference Fourier maps and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and $\mathrm{N}-\mathrm{H}=$ 0.82 (1) \AA and fixed isotropic displacement parameters of $U_{\text {iso }}(\mathrm{H})=$ $0.05 \AA^{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the National Natural Science Foundation of China (No. 50073019).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Brown, G. M. \& Chidambaram, R. (1973). Acta Cryst. B29, 2393-2403.
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, S.-R., Cai, G.-Q., Zhu, L.-G. \& Xiao, H.-P. (2005). Acta Cryst. C61, m177m178.
Fan, S.-R. \& Zhu, L.-G. (2005a). Acta Cryst. E61, m174-m176.
Fan, S.-R. \& Zhu, L.-G. (2005b). Acta Cryst. E61, m2080-m2082.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ma, J. -F., Yang, J., Li, L., Zheng, G.-L. \& Liu, J.-F. (2003). Inorg. Chem. Commun. 6, 581-583.
Marzotto, A., Clemente, D. A., Gerola, T. \& Valle, G. (2001). Polyhedron, 20, 1079-1087.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, H.-Y., Huang, C.-H., Jin, X.-L. \& Xu, G.-X. (1995). Polyhedron, 14, 12011206.

metal-organic papers

Wang, W.-G., Zhang, J., Song, L.-J. \& Ju, Z.-F. (2004). Inorg. Chem. Commun. 7, 858-860.

Wang, X.-Q., Zhang, J., Li, Z.-J., Wen, Y.-H., Cheng, J.-K. \& Yao, Y.-G. (2004). Acta Cryst. C60, m657-m658.

